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ABSTRACT

This report describes the physical models employed in GP8014C, the modeling module of the
GIPSY software system developed at JPL for analysis of geodetic Global Positioning Satellite (GPS)

measurements. Details of the various contributions to range and phase observables are given, as well

as the partial derivatives of the observed quantities with respect to model parameters. A glossary

of parameters is provided to enable persons doing data analysis to identify quantities in the current

report with their counterparts in the computer programs. The present version is the second revision

of the original document, JPL Publication 87-21, dated September 15, 1987, which it supersedes. The
modeling is expanded to provide the option of using Cartesian station coordinates; parameters for the

time rates of change of universal time and polar motion are also introduced.
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SECTION 1

INTRODUCTION

In interpreting measurements of range from satellites of the Global Positioning System (GPS}

to ground-based receivers, the observables are passed through a multiparameter estimation routine

(_filter _} to estimate the parameters of a model. This model describes the spacecraft orbits and the
motions of the Earth-fixed receivers and supplies to the filter a priori values of computed observables,

as well as their partial derivatives with respect to model parameters. During 1984-85, software

was developed at JPL to perform these functions. The purpose of the present report is to describe

that portion of the software which concerns the modeling of receiver locations, motions of the whole

Earth, and computation of observables and their partial derivatives. Modeling of satellite orbits

and parameter estimation form separate units in the software chain and are described in separate

documents.

Many aspects of the model required to describe GPS range measurements are identical to the

modeling developed during the past decade for Very Long Baseline Interferometry (VLBI}. Conse-

quently much of the content of this document, as well as of the associated software package GPSOMC,

is borrowed from the VLBI modeling and parameter estimation package MASTERFIT and the doc-

ument giving the details of its models (Sovers and Fanselow, 1987). There are two major differences.

First, in satellite range measurements, the sources (transmitters) axe not at infinity, and they contain

time standards of their own. Together with the need for orbit determination, this makes the situation

considerably more complicated than the VLBI case, where signals are received from fixed sources

at infinite distances. The second, minor, model difference is the lack of necessity of describing the

passage of the signal through the Earth's ionosphere. It is assumed that ionospheric effects will always

be removed by performing measurements at two frequencies.

Three major model components which will be discussed here are geometry, clocks, and tropo-

sphere. Section 2 deals with the coordinate frame for the model and establishes methods for calcu-

lating the position of the receiver in that frame, employing the best current models of whole Earth

motions and local tidal deformations. This section is nearly identical to the corresponding coordi-

nate frame description in the MASTERFIT document, with slight differences reflecting differences

in the implementation of minor effects. The next section (Sec. 3} defines the observables and the

intimately associated models of behavior of space vehicle and receiver clocks. Section 4 presents the

model employed to describe the passage of the signal through the troposphere. All the partial deriva-

tives of observables with respect to model parameters are given in Sec. 5. Values of the physical

constants used in the GPSOMC software, as well as a complete list of the parameters presently available

for adjustment, are given in the appendices.

As of June 1990, the model description in this report corresponds to the Fortran code used to

generate the executable GPSOMC.EXE; 128 on the Section 335 VAX computers. This correspondence

holds for the dominant compollents of the observable models. Some of the code which implements

aspects of modeling that are seldom used (e.g., UTPM rates, nutation parameters, time-dependent

station positions and zenith tropospheres) has not yet been thoroughly checked; it is intended that

complete testing will be performed in the near future.



SECTION 2

COORDINATE FRAME AND GEOMETRY

The geometric range isthat portion ofthe distancebetween a satellitetransmitterand an Earth-

fixedreceiverwhich would be measured by perfectinstrumentation,and perfectlysynchronized,ifthere

were a perfectvacuum between the transmitterand receiver.Itisby far the largestcomponent ofthe

observed range. The main complexity ofthisportionofthe model arisesfrom the numerous coordinate

transformations necessaryto relatethe inertialreferenceframe used forlocatingthe spacecraftto the

Earth-fixedreferenceframe in which stationlocationsare represented.

In the followingwe will assume that "geocentricinertialreferenceframe_ means a geocentric,

equatorialframe with the equator and equinox of J2000 as definedby the 1976 IAU (International

Astronomical Union} conventionswith the 1980 nutation series(Seidelmann,1982, and Kaplan, 1981}.

On the other hand, we will mean by "Earth-fixedreferenceframe_ some referenceframe tied to

the mean surfacefeaturesof the Earth. This is a right-handed version of the CIO (Conventional

InternationalOrigin} referencesystem with the pole defined by the 1903.0 pole. Implementation is

accomplished by defining the positionof one of the fiducialstations,and measuring the positions

of the other receivers.This sectionprovides the detailsfor the evaluation of the geometric range,

including receivercoordinates,tidaleffects,and the transformation from Earth-fixedto geocentric

inertialcoordinate systems.

2.1 RECEIVER LOCATION TIME DEPENDENCE

Normally the receiver position vector rE0 and its components in the Earth-fixed reference frame

top, A, z (radius off the spin axis, longitude, and height above the equator, respectively} are considered
to be time-invariant. An alternative formulation introduces the time rates of change of the station

coordinates as adjustable parameters. The model is linear, with the components of rE0 (t) at time t
expressed as

o f,p(t (2.1)r°p : rsp -[- -- t0)

A ----A° + A(t- to) (2.2)

z = z° + - to) (2.s)

Here to is a referenceepoch, at which the receivercoordinates are (ro°p,A°, z°).
Cartesian Earth-fixedframe may be used,with components ofrE0 (t)expressed as

x = Xo + .k(t - to)
Y = Yo + ];'(t - to)

z = Zo + z(t - *o)

Alternatively,a

(2.41

(2.5)

(2.6)
The receiver_positionvector_ may includean antenna phase centeroffsetand an offsetto a standard

benchmark or monument (seeSec. 2.9). In the model development that follows)rE0 includes these

offsets,but isreferredto as the _receivervector._ Besides the lineartime variationof Eqs. (2.4-2.6),

modeling allowsforestimation of a new benchmark positionfor every observing session.

2.2 TIDAL EFFECTS

In calculatingthe geometric range,we need to consider the effectsof crustalmotions on receiver

locations.Among these deformations are solidEarth tides,tectonicmotions, and alterationsof the

Earth's surfacedue to localgeological,hydrological,and atmospheric processes. In the standard

Earth-fixedcoordinate system, tidaleffectsmodify the receiverlocationrE0 by an amount

A = A,o_ + Aoc, + Apo_ (2.7)

where the three terms are due to solid Earth tides, ocean loading, and pole tide, respectively. Other
Earth-fixed effects would be incorporated by augmenting the definition of A.



2.2.1Solid Earth Tides

Alterationofthepositionsof thereceiversbysolidEarthtidesis rather complicated due to their
coupling with the ocean tides and to the effects of local geology. We gloss over these complications, and

employ the simple quadrupole response model described by J. G. Williams (1970), who used Melchior

(1966) as a reference. Let R, be the position vector of a perturbing source in the Earth-fixed reference

system, and let rs0 be the receiver position vector in the same coordinates. If h and I are the Love
numbers, Xba phase shift of the tidal effects, and rp the phase-shifted receiver location vector in the
Earth-fixed reference system, then the vector of tidal displacements in a local Cartesian frame (x axis

vertical, y axis eastward, and z _ northward on a spherical Earth) is

6 = [hg1.,th., tgs.]T (2.s)

where

gl, = R'5- L 2 6
(2.9)

(2.10)

g3•---- _'-s (rp'R•) -4-y_ Z, _(zpX• +ypY•) (2.11)

Here/_• is the ratio of the ma_s of the disturbing object, s, to the mass of the Earth, and

R• : IX,, Y,, Z,] T (2.12)

is the vector from the center of the Earth to that body. The summation is over MI tide-producing
bodies, of which we include only the Sun and the Moon.

The phase-shifted receiver vector is calculated employing a phase lag, or equivalently, employing

a right-handed rotation, L, through an angle _b about the Z axis of date, rp = LrE0. This lag matrix,
L, is:

By a positive value of _b we mean that the peak response on an Earth meridian occurs at a time

5t = _/ws after that meridian containing rE0 crosses the tide-producing object, where WE is the

angular rotation rate of the Earth. In the vertical component, the peak response occurs when the
meridian containing rp also includes It,. The difference between geodetic and geocentric latitude can

affect this model on the order of the (tidal effect)/(flattening factor) _ 0.1 cm.

To convert the locally referenced strain, 6, to the Earth-fixed frame, two additional rotations

must be performed. The first, W, rotates the vector by an angle, _•, about the y axis to an equatorial

system. The second, V, rotates about the resultant s axis by angle, -A,, to bring the displacements
into the standard Earth-fixed coordinate system. The result is

A.o_ = VW6 (2.14)

where

0W = 1 (2.15)
ksin_° 0 cosCbo /



cos , (2.1e)ko 0

Actually, the product of these two matrices m coded:

[ cos_, cos_, - sin_, - cos,_,sin_,

vw= / sin X0cos ¢0 cosX, -,in)_0sin_bo J {2.17)sin _. 0 cos _b,

2.2.2 Ocean Loading

This section is concerned with one of the secondary tidal effects, i.e., the elastic response of the

Earth's crust to ocean tides, which move the receivers to the extent of a few cm. Such effects are

commonly labeled "ocean loading." The most complete recent model appears to be that described

by Pagiatakis (1982, 1988) and by Pagiatakis, Langley, and Vanicek (1982), which is implemented

as an option in the current GPSOMC. It was recently generalized to include effects of anisotropy and
viscoelasticity of the Earth; differences of displacements with those given by the 1982 model are well

below 1 cm. The formulation and coding are general enough, however, to permit other inputs to

be used in place of the Pagiatakis ocean loading model. Because the receiver motions caused by
response to ocean tides appear to be limited to approximately 3 cm for sites well removed from the

coast, no estimation capability was deemed necessary at present. This decision is supported by the
fact that for locations near the coast, where the effects may be more sisable, and which would thus

be expected to produce data useful in parameter estimation, the elastic response modeling is as yet

inadequate (Agnew, 1982). The present model entails deriving an expression for the locally referenced
displacement 6 due to ocean loading. In the vertical, N-S, E-W local coordinate system at time t,

N

6a- -----_ (_' cos(_it -t- V, - 8_) (2.18)
i=1

The qumxtities wi (frequency of tidal constituent i) and Vi (astronomical argument of constituent i)
depend only on the ephemeris information (positions of the Sun and Moon). On the other hand the

amplitude (_" and Greenwich phase lag 8_' of each tidal component j are determined by the particular

model assumed for the deformation of the Earth. As of November 1988, software for calculating

these deformations at an arbitrary point on the Earth's surface exists at JPL only for the Pagiatakis-
Langley model. Six tidal components are included [N = 6 in Eq. (2.18)]: the M2, _q2, I{x, O1, iV2,

and Px tides, all of which have periods close to either 12 or 24 hours. The local displacement vector is

transformed via Eqs. (2.17) and (2.14) to the displacement Ao_ in the standard Earth-fixed frame.

Input to aPSOMC provides for specification of an arbitrary number of frequencies and astronomical

arguments w_ and V_, followed by tables of the local distortions and their phases, _" and 6_', calculated
from the ocean tidal loading model of choice. In particular, longer-period tidal constituents can be
accommodated in this fashion.

There are presently four choices of models. As mentioned above, the six components of the

Pagiatakis-Langley model can be calculated by separate software for an arbitrarily located receiver

to generate input tables for GPSOMC. This has been done for all stations commonly employed in JPL

VLBI experiments. There is no comparable facility to obtain amplitudes and phases for the Agnew
(1982), Scherneck (1983), or Goad (1983) models. Consequently for these three models 0PS0MC input

tables only exist for the limited set of stations considered by these authors. Agnew considers only five

components (omitting Px), while Scherneck includes five components in addition to the Pagiatakis-

Langley set: K2, QI, MI, Ms, and S,a. These all have amplitudes of 1 mm or smaller and, thus,

are not expected to be significant at the present level of experimental accuracy. Goad's MERIT

standard model only specifies vertical displacements, but includes three components (K2, Q1 and
Airl) in addition to Pagiatakis-Langley. Due to their bulk, none of the tables of tidal amplitudes are

reproduced here, but are available on request in computer-readable form.



2.2.8Pole Tide

In additionto theeffectsofoceantides,anothersecondary tidal effect is the displacement of a

receiver by the elastic response of the Earth's crust to shifts in the spin axis orientation. The spin axis
is known to describe a circle of _ 20-m diameter at the north pole. Depending on where the spin axis

pierces the crust at the instant of a measurement, the _pole tide s displacement will differ from time
to time. This effect must be included if centimeter accuracy is desired, especially for measurements

spanning an appreciable fraction of a year.
Yoder (1984) derived an expression for the displacement of a point at latitude _b, longitude A due

to the pole tide:

+

+

[sin cos¢(x cos,X+ y sin
g

cos2 b(xcosA + ysin A)l 

sin¢(-x sinA+ ycos A)/A] (2.19)

Here wE is the rotation rate of the Earth, R the radius of the (spherical) Earth, g the acceleration

due to gravity at the Earth's surface, and h and l the customary Love numbers. Displacements of the

spin axis from the 1903.0 CIO pole position along the x and y axes axe given by z and y. Eq. (2.19)

shows how these map into receiver displacements along the unit vectors in the radial (_), latitude (_),

and longitude (A) directions. With the standard values wE = 7.292 x 10 -5 rad/sec, R = 6378 km,

and g ---- 980.665 cm/sec 2, the factor c#_R/g = 3.459 x 10 -3. Since the maximum values of z and y

are of the order of 10 meters, and h _ 0.6, l _ 0.08, the maximum displacement due to the pole tide

is 1 to 2 cm, depending on the location of the receiver (_b, A).
As in the case of the previously considered tidal effects, the locally referenced displacement $ is

transformed via the transformation Eq. (2.17) to give the displacement Apo_ in the standard Earth-

fixed coordinate system. After each of the locally referenced tidal displacements has been transformed
to these coordinates, the receiver location is

rE = rE0 + _.o_ + Aocn + _po_ (2.20)

2.8 TRANSFORMATION FROM EARTH-FIXED TO GEOCENTRIC

INERTIAL COORDINATE SYSTEMS

The Earth is approximately an oblate spheroid, spinning in the presence of two massive moving

objects (the Sun and the Moon) which are positioned such that their time-varying gravitational effects
not only produce tides on the Earth but also subject it to torques. In addition, the Earth is covered

by a complicated fluid layer, and also is not perfectly solid internally. As a result, the orientation

of the Earth is a very complicated function of time, which to first order can be represented as the
composite of a time-varying rotation rate, a wobble, a nutation, and a precession. The exchange of

angular momentum between the solid Earth and the fluids on its surface is not readily predictable,

and thus must be continually determined experimentally. Nutation and precession are well modeled

theoretically. At the centimeter level, however, even these models are not completely adequate.

The rotational transformation, Q, of coordinate frames from the Earth-fixed frame to the geocen-

tric inertial frame is composed of 6 separate rotations (actually 10, since the nutation transformation,

N, consists of 3 transformations in itself, as does the "perturbation" transformation, f/) applied to a
vector in the Earth-fixed system:

Q = nPNffX¥ (2.21)

Thus, ifrE isa receiverlocationexpressed in the Earth-fixedsystem, e.g.,the resultof Eq. (2.20),

that location,rI, expressed in the geocentricinertial(J2000) system is

= QrE (2.22)



Note that since we rotate the Earth rather than the celestial sphere, our rotation matrices, t_, P, and

N, will be the transposes of those used to rotate the inertial system of 32000 to an inertial system of
date.

2.4 UT1 AND POLAR MOTION

The first transformation, Y, is a right-handed rotation about the x axis of the Earth-fixed frame

by an angle 02. Currently, the Earth-fixed frame is the 1903.0 CIO frame, except that the positive

y axis is at 90 degrees east (Moscow). The x axis is coincident with the 1903.0 meridian of Greenwich,
and the s axis is the 1903.0 standard pole. The Y rotation matrix is

0 0)Y = cos 02 sin 02 (2.23)
- sin 02 cos 02

where e2 is identical to the Ov that may be readily obtained from the pole position published by
the International Earth Rotation Service (IERS, 1989) or the International Radio Intefferometric

Surveying (IRIS) project [IAG (International Association of Geodesy), 1987].
The next rotation in sequence is the right-hand rotation through an angle Ox about the y axis

obtained after the previous rotation has been applied:

x = 1 0 (2.24)
\sinOx 0 cosOx

In this rotation, Ox is identical to the O= obtainable from the IERS or IBIS value for the pole
position. Note that we have incorporated in the matrix definitions the transformation from the left-

handed system used by IERS to the right-handed system we use. Note also that any source of polar
motion data can be used provided it is represented in a left-handed system. The only effect would be
a change in the definition of the Earth-fixed reference system.

The application of "XY" to a vector in the Earth-fixed system of coordinates expresses that

vector as it would be observed in a coordinate frame whose s axis was along the Earth's ephemeris
pole. The third rotation, U, is about the resultant s axis obtained by applying aXY." It is a rotation

through the angle, -H, where H is the hour angle of the true equinox of date (i.e., the dihedral angle

measured westward between the xs plane defined above and the meridian plane containing the true
equinox of date). The equinox of date is the point defined on the celestial equator by the intersection

of the mean ecliptic with that equator. It is that intersection where the mean ecliptic rises from below
the equator to above it (ascending node).

co6H -sinH i)
U = sin H cos H

0 0

The angle H is composed of two parts:

(2.25)

H = h_ + _B (2.26)

where h_ is the hour angle of the mean equinox of date, and _s is the difference in hour angle of
the true equinox of date and the mean equinox of date, a difference which is due to the nutation of

the Earth. This set of definitions is cumbersome and couples the nutation and precession effects into
Earth rotation measurements. However, in order to provide a direct estimate of conventional UT1

(universal time) it is convenient to endure this historical approach, at least for the near future.

As of 1989, the software provides the option of estimating UTPM rates. The defining exprm_ions

(2.27)
[2.2s)
(2.29)

for rates of x, y polar motion and UT1 are

= e°+ 6,(t- t,,1)

e2 = e° + 6 (t -
HI = + - t.s)

6



UT1 is defined to be such that the hour angle of the mean equinox of date is given by the following

expression (Aoki et al., 1982, and Kaplan, 1981):

h.I = UT1 + 6h 41 rn 50e.54841 + 8640184'.812866 7"=

+ 0".093104 T_ - 6'.2 x 10 -e T_u (2.30)

where

T, = (Julian UT1 date) - 2451545.0
36525

The actual equivalent expression which is coded is

(2.31)

h 7 =2_r(UT1 Julian day fraction) + 67310".54841

+ 8640184'.812866 T= + 0".093104 T_u- 6'.2 x 10 -6 T_ (2.32)

This expression produces a time, UT1, which tracks the Greenwich hour angle of the real Sun to
within 16 "_. However, it really is sidereal time, modified to fit our intuitive desire to have the Sun

directly overhead at noon on the Greenwich meridian. Historically, differences of UT1 from a uniform

measure of time, such as atomic time, have been used in specifying the orientation of the Earth. Note

that this definition has buried in it the precession constant since it refers to the mean equinox of date.

By the very definition of "mean of date" and "true of date," nutation causes a difference in the
hour angles of the mean equinox of date and the true equinox of date. This difference, called the

=equation of equinoxes, _ is denoted by ccE and is obtained accordingly:

,,=,'/ =tan-'

z, 7

N12 (2.33)Nll )

where the vector

(2.34)

is the unit vector, in true equatori_d coordinates of date, toward the mean equinox of date. In mean

equatorial coordinates of date, this same unit vector is just (1,0,0) T. The matrix N-li_ • is just the
inverse (or equally, the transpose) of the transformation matrix N which will be defined below to

effect the transformation from true equatorial coordinates of date to mean equatorial coordinates of
date.

Depending on the smoothing used to produce the a priori UT1 - UTC series, the short-period

(t < 35 days) fluctuations in UT1 due to changes in the latitude and size of the mean tidal bulge may
or may not be smoothed out. Since we want as accurate an a priori as possible, it may be necessary

to add this effect to the UT1 a priori obtained from the series, UTl,moothed. If this option is selected,
then the desired a priori UT1 is given by

UTla prio_ = UTl,mooth_d + AUT1 (2.35)

UTlo_ooch_d represents an appropriately smoothed a priori measurement of the orientation of the

Earth (e.g., IERS Bulletin A smoothed or, even better, UT1R), for which the short period (t < 35
days} tidal effects either have been averaged to sero, or, as in the case of UT1R, removed before
smoothing. This AUT1 can be represented as

AUT1 = _, A_ sin k_yay
i=l _j=l "J

(2.36)

where N is chosen to include all terms with a period less than 35 days. There are no other con-

tributions until a period of 90 days is reached. However, these long-period terms are included by



the measurements of the current Earth-orientation measurement services. The values for _i and A_,

along with the period involved are given in Table I. The cz_ for / = 1, 5 are just the angles defined

below in the nutation series as 1, l', F, D, and fl respectively.

It is convenient to apply _'UXY" as a group. To parts in 1012, XY = YX. However, with the

same accuracy UXY _ XYU. Neglecting terms of 0(02) (which produce receiver location errors of

approximately 6 × 10 -0 meters):

-- sin 01 cos H - sin 02 sin H

/cosH -sinH sin 01 sin H/sin 02 cos H)
UXY = | sin H cos H

_, sin Ox - sin 02

(2.37)

Table I

Periodic Tidally Induced Variations in UT1

With Periods Less Than 35 Days

Index

i

I

2
8
4
5
6

7
8
9

I0

II
12

13

14
15
16

17
18

19

20
21

22

23

24

25
26

27
28

29
30
31
32
33

34

35

36
37

88
39
40
41

Period

(d.y.)

5.64

6.85
6.86
7.09
7.10
9.11
9.12
9.13
9.18
9.54
9.56
9.61

12.81
13.17
13.61
13.63

13.66
13.75
13.78

13.81

14.19
14.73
14.77
14.80
15.39
23.86

23.94

25.62
26.88
26.98
27.09
27.44
27.56
27.67

29.53
29.80
31.66
31.81
31.96
32.61
34.85

Argument coefficient

1 0 2
2 0 2
2 0 2
0 0 2
0 0 2
1 0 2
1 0 2
1 0 2
3 0 0

-1 0 2
-1 0 2

1 0 0
2 0 2
0 1 2
0 0 2
0 0 2
0 0 2
2 0 0
2 0 0
2 0 0
0 -I 2
0 0 0
0 0 0
0 0 0
0 -1 0
1 0 2
1 0 2
1 1 0

-1 0 2
-I 0 2

-1 0 2
1 0 0
1 0 0
I 0 0
0 0 0
I -I 0

-1 0 0
-I 0 0
-1 0 0
I 0 -2

-I -1 0

A,
(o'.oool)

2 2 -0.02
0 I -0.04
0 2 -0.10
2 1 -0.05
2 2 -0.12
0 0 -0.04
0 1 -0.41
0 2 .0.99

0 0 .0.02
2 I -0.08
2 2 -0.20

2 0 -0.08
-2 2 0.02

0 2 0.03
0 0 -0.30

0 1 -3.21
0 2 -7.76

0 -1 0.02
0 0 .0.34
0 1 0.02
0 2 -0.02

2 -1 0.05
2 0 .0.73

2 1 -0.05
2 0 -0.05

-2 I 0.05
-2 2 0.I0
0 0 0.04
0 0 0.05
0 I 0.18
0 2 0.44
0 -I 0.53
0 0 -8.26
0 1 0.54
1 0 0.05
0 0 .0.06

2 -I 0.12
2 0 -1.82
2 1 0.13

2 -I 0.02
2 0 -0.09



2.5 NUTATION

With the completion of the UT1 and polar motion transformations,we are leftwith a receiver

locationvector,rdate.This isthe receiverlocationintrue equatorialinertialcoordinatesofdate. The

lastsetoftransformationsare nutation,N, precession,P, and the perturbationrotation,f/,appliedin

that order. These transformationsgivethe receiverlocation,rz, ingeocentricinertial32000 equatorial

coordinates:
rl = nPNrd_te (2.38)

Both the nutation and precession rotation angles are defined relative to their values at Julian date

2451545.0 (J2000). The angles are computed from trigonometric and polynomial series as a function
of Barycentric Dynamic Time (TDB, Temps Dynamique Barycentrique). This time scale, which is
also used to reference the planetary ephemeris, is related to Terrestrial Dynamic Time (TDT, Temps

Dynamique Terrestre) by (Kaplan, 1981)

TDB = TDT + 0".001658 sin(g+ 0.0167sing) (2.39)

g = 2_r(357°.578-I- 35999°.050 TDT)/360 ° (2.40)

The time scale TDT runs at the same rate as InternationalAtomic Time (TAI, Temps Atomique

International)and isoffsetfrom TA! by a definedconstant,

TDT = TA! + 32'.184 (2.41)

All time arguments used innutation and precessioncomputations are measured in centuriesofTDB

from J2000 [cf.Eq. (2.31)].
The transformation matrix N isa composite of threeseparaterotations(Melbourne et al.,1968):

1. A(e) : true equatorialcoordinatesof date to eclipticcoordinatesofdate.

0 0)A(e) = cos. sin. (2.42)
-- sin • cos •

where • is the true obliquity of the ecliptic.

2. cT(6_) : nutation in longitude from ecliptic coordinates of date to mean ecliptic coordinates of
date.

(cos6_b_. sin6_b !)cr(6_)= So_ cos6_0

where 64 is the nutation in ecliptic longitude.

3. A r (E) : ecliptic coordinates of date to mean equatorial coordinates.

(2.43)

In eclipticcoordinatesof date,the mean equinox isat an angle,6_b--tan-l(y¥/z¥). 56 --e --

is the nutation in obliquity, ai_d _ is the mean obliquity (the dihedral angle between the plane of the

ecliptic and the mean plane of the equator). =Mean" as used in this section implies that the short-

period (T _< 18.0 years) effects of nutation have been removed. Actually, the separation between
nutation and precession is rather arbitrary, but historical. The composite rotation is:

N----Ar (-d)CT(Stl))A(_) (2.44)

cos 8_
= -cos_sin_

- sin _ sin 6_

cos• sin6_

cos_cosecos6_ + sin_sine

sin_ cos• cos6_ - cosE sine

sin• sin 8_ "_
cos_sinecos6_b - sin_cose )sin _ sin e cos 6_ + cos _ cos e



The 1980 IAU nutation model (Seidelmann, 1982, and Kaplan, 1981) is used for obtaining the

values for 6_b and • - _. The mean obliquity is obtained from Lieske et al. (1977) or from Kaplan

(1981):

= 23 ° 26' 21."448 - 46."8150 T - 5."9 x 10-4T 2 -]- 1."813 x 10-3T 3 (2.45)

This nutation in longitude (6_b) and in obliquity ( 6e = ¢-_ ) can be represented by a series expansion

of the sines and cosines of linear combinations of five fundamental arguments. These are (Kaplan,

1981, Cannon, 1981):

1. The mean anomaly of the Moon:

_z = I = 485866".733 + (1325 r + 715922".633)T

+ 31".310 T 2 ÷ 0".064 T 3 (2.46)

2. The mean anomaly of the Sun:

_2 = l' = 1287099".804 + (99" + 1292581".224) T

- 0".577T 2 - 0."012 T 3 (2.47)

3. The mean argument of latitude of the Moon:

_3 = F = 335778".877 + (1342" + 295263".137)T

- 13".257 T 2 + 0".011 T 3 (2.48)

4. The mean elongation of the Moon from the Sun:

_4 = D = 1072261".307 + (1236" + 1105601".328)T

- 6".891 T 2 + 0".019 T 3 (2.49)

5. The mean longitude of the ascending lunar node:

c_5 -- [_--- 450160".280 - (5 r + 482890".539) T

÷ 7".455 T 2 + 0".008 T 3 (2.50)

where I" --- 360 ° = 1296000".

With these fundamental arguments, the nutation quantities then can be represented by

6¢ = _ (Aoy + A,yT) sin ky,,_,(T) (2.51)

_'= 1 _i= 1 "_

and

5e = _ (Boy + BlyT) cos k_',_,(T) (2.52)

where the various values of _, kj_, Ay, and By are listed in Table II.

An additional set of terms can be optionally added to the nutations 51b and 5e in Eqs. (2.51) and

(2.52). These include the out-of-phase nutations and the free-core nutations (Yoder, 1983) with period

w/ (nominally 460 days). The "nutation tweaks" A_b and _¢ are arbitrary constant increments of

the nutation angles 6_ and 6¢. Unlike the usual nutation expressions, they have no time dependence.

The out-of-phase nutations, which are not included in the IAU 1980 nutation series, are identical to
Eqs. (2.51) and (2.52), with the replacements sin 4--, cos:

and

6_ = _ (A2y + A3iT) cos ky,_,(T)

y=l L

= (B2; + sin. =l

(2.53)

(2.54)
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Table II

1980 IAU Theory of Nutation

Index

J

1

2

3
4

5

6

7
8

9

10

11
12

13

14
15

16

17

18

19
20

21

22
23

24
25

26

27
28

29

3O
31

32

33
34

35

36

37

38
39

4O

Period

(days)

6798.4

3399.2

1305.5

1095.2

1615.7

3232.9
6786.3

943.2

182.6

365.3
121.7

365.2

177.8
205.9

173.3

182.6

386.0
91.3

346.6

199.8

346.6
212.3

119.6

411.8
131.7

169.0

329.8
409.2

388.3

117.5
13.7

27.6

13.6
9.1

31.8

27.1

14.8

27.7
27.4

9.6

kj_ kia kjs kj( ki5

0 0 0 0 1

0 0 0 0 2

-2 0 2 0 1
2 0 -2 0 0

-2 0 2 0 2

1 -1 0 -1 0

0 -2 2 -2 1

2 0 -2 0 1
0 0 2 -2 2

-171996 -174.2

2062 0.2

46 0.0

11 0.0
-3 0.0

-3 0.0

-2 0.0

1 0.0

-13187 -1.6

0 1 0 0 0

0 1 2 -2 2
0 -1 2 -2 2

0 0 2 -2 1

2 0 0 -2 0

0 0 2 -2 0

0 2 0 0 0

0 1 0 0 1
0 2 2 -2 2

0 -1 0 0 1

-2 0 0 2 1

0 -1 2 -2 1
_. 0 0 -2 1

(3 1 2 -2 1
0 0 -1 0

2 1 0 -2 0

0 0 -2 2 1

0 1 -2 2 0
0 1 0 0 2

0 0 1 1

0 1 2 -2 0
0 0 2 0 2

0 0 0 0

0 0 2 0 1
0 2 0 2

0 0 -2 0

-1 0 2 0 2

0 0 0 2 0

0 0 0 1
-1 0 0 0 1

-1 0 2 2 2

1426 -3.4

-517 1.2

217 -0.5

129 0.1

48 0.0

-22 0.0
17 -0.1

-15 0.0

-16 0.1

-12 0.0
-6 0.0

-5 0.0

4 0.0
4 0.0

-4 0.0

1 0.0

1 0.0

-1 0.0
1 0.0

1 0.0

-1 0.0
-2274 -0.2

712 0.1

-386 -0.4
-301 0.0

-158 0.0

123 0.0

63 0.0

63 0.1
-58 -0.1

-59 0.0

92025 8.9

-895 0.5

-24 0.0

0 0.0

1 0.0

0 0.0

1 0.0
0 0.0

5736 -3.1

54 -0.1

224 -0.6

-95 0.3

-70 0.0
1 0.0

0 0.0

0 0.0

9 0.0

7 0.0
6 0.0

3 0.0

3 0.0

-2 0.0

-2 0.0
0 0.0

0 0.0

0 0.0

0 0.0
0 0.0

0 0.0

0 0.0
977 -0.5

-7 0.0

200 0.0
129 -0.1

-1 0.0

-53 0.0

-2 0.0

-33 0.0

32 0.0
26 0.0
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Table II cont.

1980 IAU Theory of Nutation

Index

J

41

42

43

44

45

46
47

48

49
5O

51
52

53

54
55

56

57
58

59

60
61

62
63

64
65

66

67

68

69
70

71

72

73
74

75

76

77

78
79

80

Period

(days)

9.1

7.1

13.8

23.9

6.9

13.6
27.0

32.0

31.7
9.5

34.8
13.2

14.2

5.6
9.6

12.8

14.8
7.1

23.9

14.7
29.8

6.9
15.4

26.9

29.5
25.6

9.1

9.4

9.8

13.7
5.5

7.2

8.9
32.6

13.8

27.8

9.2

9.3
27.3

10.1

kjl kja ki3 kj4 kj6

1 0 2 0 1

0 0 2 2 2

2 0 0 0 0

1 0 2 -2 2

2 0 2 0 2
0 0 2 0 0

-1 0 2 0 1

-1 0 0 2 1

1 0 0 -2 1
-1 0 2 2 1

1 1 0 -2 0

0 1 2 0 2
0 -1 2 0 2

1 0 2 2 2

1 0 0 2 0
2 0 2 -2 2

0 0 0 2 1

0 0 2 2 1
1 0 2 -2 1

0 0 0 -2 1
1 ol 0 0 0

2 0 2 0 1

0 1 0 -2 0

1 0 -2 0 0
0 0 0 1 0

1 1 0 0 0

1 0 2 0 0

1 -1 2 0 2

-1 -1 2 2 2
-2 0 0 0 1

3 0 2 0 2

0 -1 2 2 2

1 1 2 0 2
-1 0 2 -2 1

2 0 0 0 1

1 0 0 0 2

3 0 0 0 0

0 0 2 1 2
-1 0 0 0 2

1 0 0 -4 0

-51

-38

29

29

-31

26
21

16

-13

-10
-7

7
-7

-8

6
6

-6

-7

6
-5

5
-5

-4

4

-4
-3

3

-3

-3

-2
-3

-3

2
-2

2

-2

2

2

1
-1

0.0

0.0

0.0

0.0

0.0

0.0
0.0

0.0

0.0

0.0
0.0

0.0

0.0
0.0

0.0

0.0
0.0

0.0

0.0

0.0
0.0

0.0
0.0

0.0

0.0
0.0

0.0

0.0

0.0

0.0
0.0

0.0

0.0
0.0

0.0

0.0

0.0

0.0

0.0

0.0

Boy Bxi
(0".0001)

27 0.0

18 0.0

-1 0.0

-12 0.0

13 0.0

-1 0.0
-10 0.0

-8 0.0

7 0.0

5 0.0

0 0.0
-3 0.0

3 0.0

3 0.0
0 0.0

-3 0.0

3 0.0

3 0.0
-3 0.0

3 0.0
0 0.0

3 0.0

0 0.0
0 0.0

0 0.0

0 0.0

0 0.0

1 0.0

1 0.0
1 0.0

1 0.0

1 0.0

-1 0.0
1 0.0

-I 0.0

1 0.0

0 0.0

-1 0.0
-1 0.0

0 0.0
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TableII cont.

1980IAU Theory of Nutation

Index Period

j (days)

81 14.6

82 5.8
83 15.9

84 22.5
85 5.6

86 7.3
87 9.1

88 29.3

89 12.8

90 4.7
91 9.6

92 12.7
93 8.7

94 23.8

95 13.1
96 35.0

97 13.6

98 25.4
99 14.2

100 9.5

101 14.2
102 34.7

103 32.8

104 7.1

105 4.8
106 27.3

kjx kj2 kjs kj4 kys

-2 0 2 2 2

-1 0 2 4 2
2 0 0 -4 0

1 1 2 -2 2

1 0 2 2 1

-2 0 2 4 2

-1 0 4 0 2
1 -I 0 -2 0

2 0 2 -2 1

2 0 2 2 2

1 0 0 2 1
0 0 4 -2 2

3 0 2 -2 2

1 0 2 -2 0

0 1 2 0 1
-I -I 0 2 1

0 0 -2 0 1
0 0 2 -1 2

0 1 0 2 0

1 0 -2 -2 0

0 -I 2 0 1
1 1 0 -2 1

1 0 -2 2 0

2 0 0 2 0
0 0 2 4 2

0 1 0 1 0

Aoj Alj

(0".0001)

1 0.0

-2 0.0

-1 0.0
1 0.0

-1 0.0

-1 0.0

1 0.0

1 0.0
1 0.0

-1 0.0

-1 0.0

1 0.0
1 0.0

-1 0.0

1 0.0

1 0.0
-1 0.0

-1 0.0

-1 0.0

-1 0.0
-1 0.0

-i 0.0

-1 0.0

1 0.0

-1 0.0

1 0.0

Boy Blj

(0".0001)

-1 0.0

1 0.0

0 0.0

-1 0.0
1 0.0

1 0.0

0 0.0

0 0.0

-1 0.0

0 0.0
0 0.0

0 0.0

0 0.0

0 0.0

0 0.0
0 0.0

0 0.0
0 0.0

0 0.0

0 0.0

0 0.0
0 0.0

0 0.0

0 0.0

0 0.0

0 0.0

Expressions similar to these are adopted for the flee-core nutations:

5¢ = (Aoo + AloT)sin(wiT ) + (A2o + A30T)cos(w/T) (2.55)

and

6e = (Boo + BloT) cos(wiT ) + (B2o + B3oT)sin(mlT) (2.56)

The nutation model thus contains a total of 856 parameters: A_j ({=0,3; j=l,106) and B_y (i:0,3;
j=1,106) plus the free-nutation amplitudes A_o ({=0,3), B,o (i=0,3). The only nonzero a priori
amplitudes are the Aoj, Aly, /toy, BIj (j=1,106) of the 1980 IAU nutation series.

The nutation tweaks are just constant additive factors to the angles 6¢ and 6e:

6¢ _ _¢ + A¢ (2.57)

and

6e -4 6e + Ae (2.58)
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It isemphasizedthat,for thepresent,thedefaultnutationmodelin GPSOMC is just the 1980 IAU
nutation model.

2.6 PRECESSION

The next transformation in going from the Earth-fixed frame to the geocentric inertial frame is

the rotation P. This is the precession transformation from mean equatorial coordinates of date to the

equatorial coordinates of the reference epoch (e.g., J2000). It is the transpose of the matrix given on

page 7 of Melbourne et al. (1968):

/>1x = cos fA cos OA COSZA -- sin fA sin ZA (2.59)

P12 = cos fA cos OA sin ZA + sin fA COSZA (2.60)

Pzs -- cos _A sin 0A (2.61)

P21 ---- - sin fA COSOA COSZA -- cos fA sin ZA (2.62)

P22 = -- sin fA COSOA Sin ZA -t- cos fA COSZA (2.63)

P23 = - sin fA sin OA (2.64)

P31 = - sin OA COSZA (2.65)

P3z = - sin OA sin ZA (2.66)

P3s = cos OA (2.67)

With the angular units in arc seconds, the arguments are

fA = 2306.2181 T + 0.30188 T 2 + 0.017998 T 3 (2.68)

ZA = 2306.2181T + 1.09468 T 2 + 0.018203 T 3 (2.69)

OA = 2004.3109 T - 0.42665 T 2 - 0.041833 T 3 (2.70)

These expressions are given by Lieske et al. (1977) and by Kaplan (1981). This completes the standard
model for the orientation of the Earth.

2.7 PERTUI_BATION ROTATION

The standard model for the rotation of the Earth as a whole may need a small incremental

rotation about any one of the resulting axes, for example, in compensating for defects in the a priori
precession model. Define this perturbation rotation matrix as

where

fl = _=_u_, (2.71)

0 0)A= = 1 6Offi (2.72)
-60= 1

with 60= being a small angle rotation about the x axis, in the sense of carrying y into s;

(10 o1A u = 1 0 (2.73)
5Oy 0 1

with 60_ being a small angle rotation about the y axis, in the sense of carrying z into x; and

(1A, = i (2.74)
0 0
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with 80, being a small angle rotation about the • axis, in the sense of carrying x into y. For angles
of the order of 1 arc second we can neglect terms of order 502Rz as they give effects on the order

0.015 cm. Thus, in that approximation

1 6e, -6ev)
n = -60. 1 60. (2.75)

\ 60_ -6o= i

In general,
_e, = 6e_(t] = 6e,o + _O,T + .f,(T) (2.76)

which is the sum of an offset, a time-linear rate, and some higher-order or oscillatory terms. Currently,

only the offset and linear rate are implemented. In particular, $0 v is equivalent to a change in the

precession constant. Setting
6Offi = 60 r = 60, = 0 (2.77)

gives the effect of applying only the standard rotation matrices.
Starting with the Earth-fixed vector, rz0, we have shown in Sections 2.1-2.6 above how we obtain

the same vector, rl, expressed in the geocentric inertial frame:

rz = flPNUXY(rso + A) (2.78)

2.8 GEOCENTER OFFSET AND COORDINATE SCALING

The Earth-fixed reference frame is essentially derived from VLBI measurements, which are com-

pletely insensitive to the location of the Earth's center of mass. Practically, receiver coordinates are
based on the location of a reference station, which is derived either from spacecraft tracking data or

satellite laser ranging (SLR) measurements. Consequently, there might be sizable errors in fiducial

station locations (N 10 m or _ I m for the two techniques, respectively). GPS tracking data is capable
of determining the position of the geocenter to an accuracy dependent on the quality and quantity of

the range observations. In order to allow for the possibility of solving for the location of the geocenter,
Cartesian offsets were introduced, such that the receiver coordinates (including those of the reference

station(s)) are

ZEo "* ZEo -4- ZGC

YEo --* YSo + YGC

ZEo -'* ZEo "_- ZGC

(2.79)

or in vector notation,
rs0 --* rso + roc (2.80)

Another problem with coordinate systems at the present level of understanding is the uncer-

tainty that the coordinate transformations for a priori satellite orbit• are being carried out correctly.
Introduction of a scale factor _, which multiplies Earth-fixed coordinates relative to the geocentric

inertial coordinates of the satellites, permits empirical detection of such problems. It give• rise to the
transformations

YEo _ _YEo

ZEo _ _ZE0

(2.81)

or

rE0 ---* c, rEo (2.82)
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in vector notation, for the coordinates of the receivers.

Upon inclusion of both of these modifications in the Earth-fixed station locations rEo of Eq. (2.78),
the final expression for the station location vector in geocentric inertial coordinates becomes

rl = f]PNUXY(arEo + rGc + A) = Q(arE0+rGc+A) (2.83)

2.9 PHASE CENTER OFFSETS

Geometric offsets may exist between transmitter and receiver phase centers and the standard
reference points. In the case of the ground-based receiver, this offset takes the form of a aslte vector"

from a surveyor's benchmark to the receiver phase center. Norma]ly, the position of the benchmark,
rBM, is desired, rather than the position of the phase center, rpc. These two vectors are related

through the site vector rsuRv:

rEo = rB_ = rpc +rsuRv (2.84)

For GPS satellites, the ephemeris reference point is the spacecraft center of mass (CM). The vector

offset between the phase center and CM is given by 0.211 i+0.886 k meters in a coordinate system in
which the unit vector k points from the spacecraft CM to the Earth center, j is the normalized cross

product of k with the unit vector from the spacecraft to the Sun, and i completes a right-handed

system (Winn, 1984). Both of these geometric offsets are incorporated into GPS0_C modeling.
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SECTION S

OBSERVABLES AND CLOCK PARAMETERS

Range measurements from GPS satellites are based on the detection of the phase of transmitted

electromagnetic signals. The physical observable is the difference between the reference phase of the
transmitter at the time of signal emission and the reference phase of the receiver at the time of signal

reception. Such measurements of necessity involve detailed and careful consideration of a number of

time scales. These are intimately related to the definitions of the observables, and for that reason this

section contains detailed descriptions of both the observables and clock models.

The GPS satellite transmissions are one-way transmissions originating at the spacecraft. A carrier

signal modulated by a pseudo-random noise code is broadcast (Spilker, 1978). Both a acarrier phase _

observable _o and a apseudo-range _ observable R are modeled in GPSOMC. The observed observables are

related in a prescribed way to the physically detected phase. The computed observables are defined
in terms of clock differences sin_.e the reference phase at the receiver is derived from the station clock

and the reference phase at the transmitter is derived from the space vehicle clock. For both carrier

phase and pseudo-range the computed observable is given by the theoretical difference between the

space vehicle and station clocks plus a bias term. The clock difference is accumulated as the sum of

five components - the first is the difference between station clock time and proper time at the station;
the second is the difference between proper time and coordinate time at the station; the third is the

difference between the coordinate time of signal emission and the coordinate time of signal reception;

the fourth is the difference between coordinate time and proper time at the spacecraft; the fifth is the

difference between proper time at the spacecraft and spacecraft clock time.
These terms are readily interpreted. The first term is referred to as a station clock error and

the fifth term is referred to as a space vehicle clock error. The second and fourth terms are general

relativistic time transformations. The third term is the solution to the light time equation connecting
the events of signal emission and signal reception. Of these five contributions the third term is

normally dominant. This term is also referred to as the geometric range between spacecraft and

receiver, whence the use of arange _ in referring to GPS observables. Tropospheric and ionospheric

delays are not considered here; they are discussed in Sections 1 and 4 of this report. The observables

are assumed to have been calibrated to remove the effects of instrumental delays. A detailed model
for instrumental phase delay is not provided, but a bias term is included in the definition of both data

types. This bias might account for

(i) an unknown integer number of cycles of phase,

(ii) an uncalibrated offset in the absolute phase of an oscillator,

(iii) uncalibrated delays within transmitter or receiver electronics, or

(iv) an uncalibrated offset between the phase reference used for signal detection and the phase
reference used for time-tag generation within a receiver.

The geometric portion of the observable is calculated in the geocentric reference frame, moving
with the Earth, with inertial J2000 oriented axes. This reference frame is the generalization of the

local inertial reference frame containing the Earth (Ashby and Bertotti, 1984) and provides a simple

setting for applying all necessary relativistic corrections. Terrestrial Dynamic Time (TDT) is used as
coordinate time (Thomas, 1975 and Ashby and Allan, 1979). The spacecraft equations of motion are
integrated in this reference frame using TDT as the independent variable. As described in Section 2

of this report, station coordinates are transformed into this reference system. Care must be taken

when selecting a priori values for model parameters since particle mass and physical distance in
the geocentric system differ by a scale factor from current determinations of same in the celestial

coordinate system (Hellings, 1986).

We use t2 to denote the time of signal emission and ts to denote the time of signal reception.
Let t3, t3, and t3 refer to, respectively, station clock time, proper time, and coordinate time at the

receiver. Let _'2, _2, and t2 refer to, respectively, space vehicle clock time, proper time, and coordinate
time at the transmitter.
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8.1 PSEUDO-RANGE

Observed pseudo-range is given by

($.1)

with time tag ts, where the times {s and t_ are the actual times kept by the station and spacecraft

clocks, respectively. Correlation of the received pseudo-raadom noise code generated and transmitted

by the space vehicle with a local copy of the code within the receiver allows for direct conversion
between the detected received phase and clock readings.

Computed pseudo-range is given by

ac = c ( is - {2+ BsrN ) (3.2)

with time tag ts, where now the times ts and t2 are the modeled times of, respectively, the station

and space vehicle clocks. To facilitate computation, this expression is rewritten as a sum of six terms,

+  s-ts
+ ts--t2

+ t2-{2

+  2-{2

+ Ssr,,) (3.3)

The first five terms are the five clock differences discussed above, and the last term is the bias discussed
above.

The station clock error is modeled as a quadratic function,

{s-{S = asrN, a + bsTuv,a({s - {so) + CSTN,a({S --tso")2 (3.4)

On the right-hand side ts0 is a specified epoch. The coefficients aSTN,£, bSTN,£, and eSTN,£ are
generally unknown but presumed to be small. Ideally, in geocentric coordinates, all clocks fixed to

the surface of the Earth run at approximately the same rate, with the precise rate depending weakly

on the geodetic coordinates of the clock. We assume that all clocks are adjusted as necessary so that
their average rate is the same as that of coordinate time. The rate of coordinate time has been defined

to agree with the SI second (Kaplan, 1981). Thus, in our model, station proper time, ideal UTC time,
and coordinate time all run at the same rate. This is not a limitation since the deviation of the rate

of any clock from the assumed rate can be modeled as a station clock error.

The difference between proper time and coordinate time at the station is given by

ts - ts = - [ (TAI - UTC) + (TDT - TAI) ] (3.5)

where TAI - UTC is an integer number of leap seconds which changes approximately once a year
and TDT - TA[ is defined to be 32.184 eec.

The geometric range is given by the solution to the light time equation,

IrSTN(tS) --rsv (t2)I
ts--t_= + Atrel..om (3.6)

C

where rsTN(ts) is the inertial receiver position at the time of signal reception, ray (t2) is the space

vehicle position at the time of signal transmission, and Atrei_,om is the general relativistic correction to

the geometric range. To begin the computation of the range, we start from the measurement epoch {3.

This is converted to ts using Eq. (3.4) and to ts using Eq. (3.5). The station position in geocentric

inertial coordinates is then calculated at the epoch ts using Eq. (2.83). Thus station clock errors
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affectthe computation of the geometric range. Given the station position and a PV file containing

the geocentric inertial spacecraft position as a function of coordinate time, the light time equation is

iteratlvely solved to obtain t2:

t3 t(2i) (;)" ^+(_)
-- -- r12 IC -- --'rdg.o., (3.7)tl_+'), = t__)+ . (_) .(_),, (_),

x--rz2 -r 2 /tcrz2/

The space vehicle position use_l in this computation is that of the antenna phase center, as discussed in
section 2.9 of this report. The gravitational delay Atrdg.o._ is given by (Tausner, 1966 and Holdridge,

1967)

(i + "]PPN)_E in rl "_" r2 + r12 (3.8)
_re|¢1om : C3 rl ..1_ r2 _ rl 2

where _PPN is 1 for general relativity, PE is the Earth's gravitational constant, and, as in Eq. (3.7),

rz = rSTN(t3) rl = Ir, I

• 2 = ,sv (t2) ,2 = I_1
r12 = rl -- r2 rz2 = lrt2[

(3.9)

We use raw (t3) as the initial estimate for ray (t2); the light time iteration converges very fast.
The rate of an ideal space vehicle clock will differ from the rate of coordinate time due to the

difference in gravitational potential and speed between the space vehicle clock and the reference clock.
This rate difference may be decomposed into two components: a bias component which depends only

on the nominal semi-major orbit axis of the space vehicle, and a periodic component which depends

mainly on the orbit eccentricity. The frequencies of the GPS satellite clocks were purposely set
low before launch, relative to the nominal published values, to offset the nominal bias rate difference

between space vehicle time and coordinate time (Spilker, 1978). Accordingly, our model rate difference

between proper time and coordinate time at the spacecraft contains only a periodic component. This

component depends only on orbit eccentricity. A bias component due to off-nominal semi-major orbit
axis and a small periodic component due to Earth oblateness and solar perturbations are absorbed in

the space vehicle clock error model. The difference between proper time and coordinate time at the

space vehicle is given by

t2 - _2 = (TAI - UTC) + (TDT - TAI) + At,do,, (3.10)

where the clock correction term is

At,_lo,, = 2 rsv (t2) ._sv (t2)/c2 (3.11)

This result may be derived from integration of the usual differential equation relating coordinate

and proper time [e.g., Eq. (1) of Thomas (1975)] in the geocentric reference system, modeling the

space vehicle orbit about a point-mass Earth as elliptical while ignoring the differential gravitational

potential due to perturbing bodies. The resulting rate expression is accurate to about one part in 10 z2
for the GPS orbits, which is comparable to the instability of the GPS satellite clocks. Note that the

large (_ 50 sec) defined offset between coordinate and proper time appears in Eqs. (3.5) and (3.10)
with opposite sign, and hence does not affect the computation. It is necessary, though, to include this

offset due to our convention of basing observable time tags on UTC while indexing the PV file by
TDT.

Analogously to the station clock error, the space vehicle clock error is also modeled as a quadratic

function,
t2--t2 = asv,£ + bsv,£(t2-t20) + csv, x(f2-t2o) 2 (3.12)
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Ontheright-handsidet2o is a specified epoch. The space vehicle clock error does not affect geometric
range. The last term in the model k the pseudo-range bias BarN, which depends on the station but

is independent of the spacecraft. It also does not affect the value of the computed geometric range.

8.2 CARRIER PHASE

Observed carrier phase is given by

_,o= [-c/,,,.) (_sv - _STN) (3.13)

with time tag ts,where _bsv isthe received RF (radiofrequency) phase of the space vehiclesignal
at time t3, _STN iS the receiver reference phase at time t's, and wn is the nominal value for both the

transmitted frequency of the space vehicle signal and the receiver mixing frequency.
The receiver reference phase is modeled as

_'_(_3) = ,.,. ( _'3- t';o) (3.14)

Since phase is a physical invaxiant, the received phase of the space vehicle signal at the time of signal

reception is the same as the space vehicle reference phase at the time of signal transmission,

_sv" (t3) = _,eY(G) (3.15)

The space vehiclereferencephase ismodeled as

(3.16)

Thus the computed carrierphase isgiven by

@C = c ( is--iS+ BSv, srN) (3.17)

with time tag ts. The integrationconstants t_0 and t"_0have been absorbed in the carrierphase bias

BSV,STN. Deviation of the stationmixing frequency from nominal ismodeled asa stationclockerror,

and deviation of the space vehicletransmitterfrequency from nominal ismodeled as a space vehicle

clock error. Note that the modeled value for carrierphase appears to be the same as the modeled

value forpseudo-range, except forthe substitutionofthe carrierphase bias forthe pseudo-range bias.

A furtherdistinctionisthat we allow the modeled valuesof stationtime and spacecrafttime to be
differentfor the two data types.

Just as for pseudo-range the expressionfor computed carrierphase isrewritten as a sum of six

terms,

+ ts -ts

+ t3 -- t2

+ t2--_2

"-t- BSV, STN ) (3.18)

The stationclock errorismodeled as

is - _s : ,,sr_,,,, + b_rN,_(_s- _'So)+ csrN,,,(_s- _So)_ (3.19)
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and the space vehicle clock en'or is modeled as

£2 - t2 = asv,_, + bsv._,(t2 - t2o) + csv,_(L2 - L2o)2 (3.20)

The carrier phase bias BSV, STN depends on both the station and the space vehicle. The other terms

in Eq. (3.18) axe evaluated just as for pseudo-range. They will, however, have different numerical
values unless the station clock error coefficients axe identical for the two data types. The value of the

station clock error affects the geometric range, while the values of the carrier phase bias and space

vehicle clock error do not.
In cases where the behavior of transmitter and receiver clocks permits, both the range and phase

observables may be modeled with a common set of parameters. By analogy with Eqs. (3.4), (3.12),

(3.19), and (3.20), the common clock errors may be written as

t3--t3 :" aSTN "I- bsTN(t3 -- L3o) I- CSTN(L3 -- t'3o)2 (3.21)

and

L2--_2 = asv + bsv(L2-t2o) -P csv(L2--t2o) 2 (3.22)
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SECTION 4

TROPOSPHERE

The delay experienced by the incoming signal due to the Earth's atmosphere can be modeled

using a spherical-shell troposphere consisting of a wet component and a dry component. If E is the
apparent geodetic elevation angle of the spacecraft, the tropospheric contribution to the range is

Pt,op = PZ,,,Rdru(E) + pz,.,P_(E) (4.1)

where Pz is the additional delay at local senith due to the presence of the troposphere, and R is an

elevation angle mapping function. For recent VLBI data, it was found that modeling the zenith delay
as a linear function of time improves troposphere modeling considerably. The dry and wet senith

parameters are therefore written as

0
PZ,., = PZ,., + PZ,., (t -- to) (4.2)

where to is a reference time.
The analytic mapping function developed by Lanyi (1984) is used for mapping senith values to

the observed elevation angles. In its simplest form, this mapping function employs average values of
atmospheric constants. Provision is made for specifying surface meteorological data acquired at the

time of the experiments, which may override the average values. An approximate partial derivative is

obtained with respect to one parameter in the Lanyi mapping function; this permits adjustment even
in the absence of surface data.

Here we attempt to give a minimal summary of the final formulas. The tropospheric delay is
written as:

Pt,op = F(E)/ sin E (4.3)

where

F(E) --- pz,,,Fdrv(E) -t- pz,,.,F,_(E)

s Fb3(E)]/A + p3,.Fb4(E)/A2 (4.4)+ [p2,,FbI(E) + 2pz,,,pz,.,Fbs(E) + Pz,.,

The quantities Pzd,w and Pz,o, have the usual meaning: zenith dry and wet tropospheric delays. A
is the atmospheric scale height, A = kTo/rngc, with k = Boltzmann's constant, To : average surface
temperature, rn = mean molecular mass of dry air, and ge = gravitational acceleration at the center of

gravity of the air column. With the standard values k = 1.38066 x 10 -Is erg/K, m = 4.8097 x 10 -23

g, gc = 978.37 erg/g-cm, and the average temperature for DSN stations To = 292 K, the scale height
-- 8567 m.

The dry, wet, and bending contributions to the delay, Fd, v(E), Fw_, (E), and Fbl,b2.b3,b4(E), are

expressed in terms of moments of the refractivity as

F_ry(E) : AIo(E)G(AMI,o, u) + 3auM21oG3(Mllo, u)/4

F,,_ (E) = Ao, (E)G()_M,o,/Moo,, u)/Moo,

Fb, (E) = [aG 3 (M110, u)/sin s E - Mo2oG 3 (M12o/Mo2o, u)]/2 tan s E

Fbs(E) = -Mo,IGS(MH1/Mo,,, u)/2Mool tan 2 E

Fbz(E) = - Moo2Gs (M_o2/Moos, u)/2M020, tan2E

Fb4 (E) = Mo3oG s (M13o/Mo3o, u)/2 tan 4 E

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

A misprinted sign in the last of Eqs. (5) of Appendix B of Lanyi (1984) has been corrected in
Eq. (4.10). Here G(q,u) is a geometric factor given by

a(q, u) = (I -i- qu) -I/2 (4.11)
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with
= 2o/tan2E (4.12)

where a is a measure of the curvature of the Earth's surface AIR with standard value 0.001345.

The quantities At,,, (E) and M_t,n are related to moments of the atmospheric refractivity, and are
defined below. Alo(E) involves the dry refractivity, while Aol(E) is the corresponding wet quantity.

The At,_(E) are given by

[ ,. 1,AI,n(E) = iVloim + _ (-l)"+k(211- 1)!!M.-e,i,m u
-=lk=0 2-_k!Cn----_}1 1 + (4.13)

with the scale factor A ---- 3 for E < 10 ° and A= 1 for E > 10 °. Only the two combinations (l, m) =

(0,1) and (1,0) are needed for the At,n(E). The moments of the dry and wet refractivities are defined
as

oo

M,_O" = :q'_ f_r_(q)f_ (q)dq (4.14)

0

where fd,y, ,,_(q) are the surf_ce-normMised refractivities. Here, n ranges from 0 to 1, i from 0 to 3,
and ] from 0 to 2; not all combinations are needed. Carrying out the integration in Eq. (4.14) for a

three-section temperature profile gives an expression for the general moment Mniy:

M,,,i/,,! (1 :<"')/<,"+' +e-_'[1 '7_ +!ll'l'll' '(1 1_.... 2 Iql,q2lJ b+i+l
i----0

+ (4.15)

Here,

T2(qi,q2) = 1 - (q2-- ql)/o' (4.16)

The quantities ql and q2 are the scale-height normalised inversion and tropopause altitudes, respec-

tively. For the standard atmospheric model, ql -- 0.1459 and q2 --- 1.424. The constants a and b are

functions of the dry (c_ = 5.0) and wet (fl -- 3.5) model parameters, as well as of the powers of the
refractivities (i and j) in the moment definitions. Table III gives the necessary a's and b's.

Table III

Dependence of the Constants a and b

on Tropospheric Model Parameters

1 0 1

o 1
2 0 2

1 1 fl+l

0 2 2_
3 0 3

a--1

ap - 2
2{a- I)

+ 1)- 3
2(afl --2)

3(_- I)

Note that the normalisation is such that M010 = 1; this moment has therefore not been explicitly
written in Eqs. (4.5)-(4.10).
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At present,provisionis made for input of four meteorological parameters to override the standard

(average) values of the Lamyi model. These are (1) the surface temperature To, which determines the
atmosphere scale height (default value 292 K); (2) the temperature lapse rate W, which determines

the dry model parameter r, (default values FV = 6.8165 K/km, _ = 5.0); (3) the inversion altitude

hx, which determines qx = hx/A (default value hx = 1.25 km); and (4) the tropopause altitude h2,

which determines q2 = h2/_ (default value h2 ---- 12.2 kin). A fifth parameter, the surface pressure
P0, is not used at present. Approximate sensitivity of the tropospheric delay (at 15 ° elevation) to the

meteorological parameters is -0.3 cm/K for surface temperature, 1 cm/(K/km) for lapse rate, and

-1 cm/km for inversion and 0.2 cm/km for tropopause altitude, respectively.
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SECTION 5

DERIVATIVES OF OBSERVABLES WITH RESPECT TO MODEL PARAMETERS

This section presents expressions for the partial derivatives of the computed observables with
respect to the three classes of model parameters described in this document, as well as with respect

to dynamic parameters related to the spacecraft state. The relativistic corrections, the tropospheric
correction, and the space vehicle clock error term in the computed observable depend weakly on

geometric parameters, on the station clock error, and on dynamic parameters. These functional

dependences are neglected when computing partial derivatives.

We begin with some notation. From Eqs. (3.2) through (3.17) the computed observable can be
written as

C==c (_3-t3) + p + c(t2-t2) + cBv (5.1)

where C is _c for pseudo-range and _oC for carrier phase, and i/ is STN for pseudo-range and

SV, STN for carrier phase.
The clock error terms are given by

_3--t3 = GSTN,_ "_- bSTN,_(t3- t3o) q- CSTN,_(t3- _30) 2 (5.2)

and

_-i2 ,= asv,. + bsv,p(_2-_2o) + csv,B(_2-_o)2

where _ is R for pseudo-range and ¢_ for carrier phase. The geometric range is given by

(5.3)

p= I lesrN-lesvI (5.4)

where leSTN is the geocentric inertial station position at the time t3 of signal reception and rsv is

the space vehicle position, in the same system, at the time t_ of signal emission. The station position
comes from Eq. (2.83),

rSTN = flPNUXY ( aleSTNo "i- leG(7 -_- A) (5.5)

The space vehicle position and the times of signal emission and reception are related through the
light time equation, from which we may write the geometric range as

p = c ( ts - t_ ) (5.e)

and, equivalently,

C2(t3 -- t2) 2 = ( leSTN -- leSV ) " ( YSTN -- YSV ) (5.7)

5.1 GEOMETRIC PARAMETERS

The class of "geometric" parameters includes receiver coordinates and their rates, Love numbers

and tide phase, relativistic % geocenter offsets, coordinate scale factor, UTPM parameters, nutation
amplitudes, and the coefficients of the perturbation rotation. Computed observables for both the

carrier phase and pseudo-range have identical functional dependence on these geometric parameters

through the geometric range. The partials will therefore be written for the geometric range given by
Eq. (5.4). Symbolizing one of the geometric parameters by _/, we have

8
0p = _(lesT_- les_)T _(lesT_ _ le_v)

[alesrJv aleSV 0fawn ]= _(rSTN -- lesv)T [. _ 8rsrn a_

= _(leST_-rsv) r [Is arsv I OrsTN8rsmJv J 8_
(5.8)
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Thelight time correction term is computed first:

8rsv 8t2

8rSTN arSTN
(5.9)

The partial on the right-hand side is obtained from Eq. (5.7) by implicit differentiation:

at2 ]
a_sT; / (5.10)

Ota
Solving for -- gives

arsTN
Or2 --(rSTN -- rsv )T

_STN _(1 _r'TN-rsv r_v I

p c

(5.11)

The computation of the geometric partials is complete except for the parameter-dependent terms
8rSTN

8,7

Taking the parameters in order of their appearance on the right-hand side of Eq. (5.5), the partial
derivatives are

8rSTN an
= PNUXY(r_rSTNo + rGc + A)

8 60ffi,_,, o 8 50=,y,, o

8P ST N Of]
= PNUXY(arsTNo + rGc + A)

O 86_,u ,, O _6z,y,,

(5.12)

(5.13)

for the perturbation rotation parameters;

caNU_xY(arSTNo ÷ rco + A)
--= nP\oAq / (5.14)

8rSTN / x8NU
= f]p|_Xy(_rSTN ° -t-rG C + A) (5.15)

for the nutation series amplitudes;

8rSTN (8NU)= XY(arsTNo + rGc + A) C5.16)

_FSTN

8Ae

8NU
-- = aP(y -c,)xvc ,s,,,o +,Gc+ A) (5.17)

for the nutation offsets;

OrSTN

c9(UT1 - UTC)

ou

= flPNo'uTll - UTc'XY(arSTN°; + rGc -F A) (5.18)

OrSTN tiP 8U .= N--=-XY(arsTNo + rGc + A)
Oil OH

(5.19)

for universal time, and

= flPNU (erSTNo + rcc + A)
(5.20)
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arSTN _ f_PNU( aX. Y _(_rSTNo + rGC + A) (5.21)
_L,-2 _ael,2/

for polar motion. The only quantities remaining to be evaluated in Eels. (5.12- 5.20) are the partial
derivatives of the various rotation matrices. These are exactly the same as the partials entering

modeling of VLBI observations, and axe set out in some detail in the publication of Sovers and

Fanselow (1987), Sec. 2.12. For example, the first partial in Eq. (5.12) is

-- 0 (5.22)
O 60= 0 -I

The partials involving UTPM rates are

-_-OX=(t-t,el) I-So @I O0 -cos@1)O
aO1 _ COS O1 0 -- sin 01

0 0)-cos02 -sinO2

(5.23)

(5.24)

-sinH -cos// i)
aU = (t- t,el) cos// --sin H (5.25)
a_F o o

Continuing the evaluation of partial derivatives with respect to geometric parameters, and using

Q = f_PNUXY from Eq. (2.21) to simplify notation, we have for the station coordinates and their

time rates of change,
rSTNo ----rOTN ÷ *OTN(t - to) (5.26)

rSTN = Q(_rSTNo -{- rGo + _) (5.27)

OrSTN = _Q (5.28)
cgrOsT N

_rSTN ---_ ¢X(t -- tO)Q (5.29)
_rOTN

For the geocenter offset components,

For the coordinate scale factor,

OrsT______NN= Q (5.30)
argo

_r S T N

Cga ---"QrSTNo (5.31)

The only parameters in the tidal displacement A are the two solid-Earth-tide Love numbers h

and l, and the tide phase angle _b. The corresponding partial derivatives of the range are somewhat

_f STN

comp_cated:

(o)-- = qvw _. (5.s3)
6!
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( a_,(_____))
arsTN = qVW a_(i)

a,l, a,l,,

where the tide phase partials of the g_s of Eqs. (2.9-2.11) axe

Eq.

(5.34)

agl, 3/_,r_

a_ = -_-, 6 hrp'R°(x°vp - Y,=_)

a_. 3_,r_ Irpl r
8_b = R. s- I [(rp. Ro)(z.X° + VpYo) - (Y.zp

a_ = R_- t (X.y_- Y.=_)

(5.35)

- x,v,)'] (5.36)

_(2,p R. - ,_z.)]+ y_z. z,, (5.37)
J

Finally, the partial derivative of range with respect to the post-Newtonian parameter _PPN [see

(3.8)] is

Op = /__.EEinrl + r2 + r12 (5.38)
O,._ppN (:2 rl + r2 -- r12

5.2 CLOCK PARAMETERS

Clock parameters include the coefficientsof the station and space vehicle clock error models and

also the pseudo-range and carrier phase biases. From Eq. (5.1), the partial of pseudo-range with

respect to the firststation clock error parameter is

8£ c O Op Otz

8aSTN,£ Or3 OaSTN,£

= c -- _ (5.39)

where we have used

and

at3

OaSTN,I_

0 (t3 - &) = 1 (5.40)
OaSTN,£

8

= 8aSTN,_ [{3 -- ({3 -- t3)] = --I (5.41)

The range rate _ is, from Eq. (5.0), given by

Op

= at--_ (5.42)

_=c(1 - ate) (5.43)

The partial on the right-hand side is obtained from implicit differentiation of Eq. (5.7):

Or2 )2c2(t3--t2,)(1 -- _ = 2( rSTN--rsv) (rSTN " _t2_ (5.44)
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8t_

Solving for _ gives

8t__!2= cp - (rsTN -- rsv ) • rSTN
at3 Cp -- (rSTN -- rsv) -rsv

(5.45)

where we have used Eq. (5.6). Substituting into Eq. (5.43) gives

/_= (rSTN-- rsv) "(_SrN -- iSV) (5.46)

,(l_,SrN--,sv _sv)
p c

The station velocity is obtained from the time derivative of Eq. (5.5), and the space vehicle velocity

is obtained from interpolation of the PV file.

The partial with respect to the first space vehicle clock error parameter is

8J_c 8

aasv,£ Oasv,£
(t2 - t'2) : c (5.47)

The pseudo-range bias partial is
a£ c

8BsTN
= c (5.48)

The pseudo-range partials with respect to the other clock error parameters are similarly computed,

as are the carrier phase partials; here we summarise the results.

8,_ c 0,_ c
:=¢ --p

OaSTN,R _aSV,£
--=¢

a_o __(__/_)(& _ &o) a_----_°= _({, - _,o)
Ob sT N,]_ 8b sv ,_

a_ c = (_- _)(& - &o)_ o_c _ _(_ - _o)_
OCSTN,R OCsv,R

(5.49)

a£ c

OBSTN
(5.50)

(5.51)

(5.52)
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5.8 TROPOSPHERE PARAMETERS

Partials of the range with respect to the dry and wet zenith delays are obtained from Eqs. (4.3)
and (4.4):

Op

cgPzd, v

Op

apr..,

-- = [Fd,,(E) + 2pz,.,f_l (E) IA] I sin S

+ [2pz..,Fb2 (S)IA + 3p2zo,Fb4(E)/A2] / sin E

-- = [F,_ (E) + 2Pzd.,Fb2(E)/4 + 2pz.., Fb3(E)/A] / sinE

(5.53)

(5.54)

For the zenith rate parameters:
Op

apz,l,m
-- = (t - to)R_,. (5.55)

In the analysis of data for which meteorological parameters are not available, it is convenient

to introduce an approximation to the mapping function [Eqs. (4.3) and (4.4)] which involves a

one-parameter estimate. This parameter p accounts for deviations from standard meteorological
conditions. The tropospheric range is expressed as

Op
p = (pz,.,+pz..,)/sinE+p_ (5.56)

where the partial derivative is

Op

Op

(Pg_,, Jr pZ,,,,)uM11o

G(M.o, ,,)[1+ C(M,,o, ,,)]sinE

+ PZ..,u(MIIo - Mtot/MooI) (5.57)G(M_,o,.)C(M_o,/Mool,_)[G(Mno,.) + C(M,o_/Moo_,.)] sinE

5.4 SATELLITE PARAMETERS

The final class of parameters in modeling GPS range measurements includes the dynamic pa-

rameters characterizing the forces on the satellites, and the six "epoch state" position and velocity
parameters, rsvo, fsvo for each space vehicle. Carrier phase and pseudo-range are affected in the same

way, through the geometric range p, by these parameters. Here we use _ to represent any parameter

of this class. The partial derivative of geometric range with respect to _ is calculated from Eq. (5.6):

Op at2

a_ = -c I (5.58)a_

The partial on the right-hand side is obtained from implicit differentiation of Eq. (5.7):

[ Ot2$ )r (_O___rsv)2c2(t3- t:2)[--_) = 2(rsTN - rsv

= --2(rSTN -- rSV )T (Orsv
k O_ t_

at2

30



at:

Solving for _ gives

at2

a_

"T arsv

(,sT_ - ,sv ) -_- ,,

op(1
p c /

(5.6o)

Substituting this result into Fxl. (5.58) gives

_ _rarsv I
ap --(rSTN -- rSV / (_ I,,

a-_= p(1 - rsTN--rsv .rsv'_
p c ,'

(5.61)

_rSV
The space vehicle velocity rsv and the variational partial a_ ¢, are read from the PV file at time

t2. Detailed descriptions of the spacecraft force models and variational partials are found in the OASIS

Mathematical Description document (Wu et al., 1986).
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APPENDIX A

Parameter Units and Physical Constants

Early during the development of software for the GIPSY project, it was decided that the units

of all parameters and partial derivatives shall be kks (kilometers, kilograms, seconds), instead of the

more customary mks. With the exception of clock parameters and range biases, we adhere to the kks

convention. To prevent numerical instabilities in parameter estimation arising from the disparity of

magnitudes of the clock parameters and the observables, clock offsets and range biases are in units of

_sec (10 -6 sec), rates in 10 -12 sec/sec, and rate rates in 10 -as sec/sec 2. All lengths were measured

in unite of kin, velocities in km/_c, and accelerations in km/sec 2. Angular quantities, such as tide

lag, UTPM, the perturbation tweaks, and nutation angles are in radians (or rad/sec for their rates).

Finally, the senith troposphere quantities are measured in km, and their rates in km/sec. These

conventions do not necessarily apply to the formatted GPSOMC input file, where units may be used for

some parameters that make them more easily recognizable.

We have tried to use the constants recommended by the IAU project MERIT (Melbourne et al.,

1983). Those that have not been defined in the text above, but which affect the results that are

obtained using GPSOMC, are given below:

Symbol Value Quantity

c 299792.458

Rs 6378.140

wB 7.2921151467 × 10 -s

/ 298.257
h 0.609

l 0.0852

g 980.665

Velocity of light (km/sec)

Equatorial radius of the Earth (km)

Rotation rate of the Earth (rad/sec)

Flattening factor of the geoid
Vertical Love number

Horizontal Love number

Surface acceleration due to gravity (g/cm _)
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APPENDIX B

GPSO}4C Parameters

Table B.I

Glossary of 6PSOMC Parameters

Parameter

asv,_

bsv,_o

CSV,_

aSTN,_

bSTN,_

CSTN,_

BSV, STN

asv, a

bsv, R

csv,£

aSTN, R

bSTN,R

CSTN,£

BSTN

asv,_

bsv,_,

csv,_,

aSTN,_

bSTN,_,

CSTN,_

GPSO_4Cname

SAT PEPOvvvvvv

SAT PRATvvvvvv

SAT PRRTvvvvvv

STA PEPO ms
STA PRAT as

STA PRRT me

BIAS "vv_ss;nn

SAT REP0vvvvvv

SAT RRATvvvvvv

SAT RRRTvvvvvv

STA REP0 ss
STA RRAT ss

STA RRRT as

BIAS PSR ss

SAT CEP0vvvvvv

SAT CRATvvwvv

SAT CRRTvwvvv

STA CEP0 sa
STA CRAT as

STA CRRT ms

Definition

Coefficients in

space vehicle clock

model (phase)
Coefficients in

station clock

model (phase)

Carrier phase bias

Coefficients in

space vehicle clock

model (range)
Coefficients in

station clock

model (range)

Pseudo-range bias

Coefficients in

space vehicle
clock model

Coefficients in

station clock

model

Reference

(3.20)

(3.20)

(3.20)

(3.19)

(3.19)
(3.19)

(3.18)

(3.12)

(3.12)
(3.12)

(3.4)

(3.4)

(3.4)

(3.3)

(3.22)

(3.22)

(3.22)
(3.21)

(3.21)

(3.21)

VVVVVV

VV

BS

nn

satellite name

satellite number

station number

sequence number
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TableB.I cont.

GlossaryofGPSOMCParameters

Parameter

rRp

z

I;.p

X

Y

Z

2

h

l

¢

"TP P N

ZGC

YGG

ZGC

zsvo

gsvo

zsvo

z svo
_SVo

%svo

GPSOMCname

RSPINAX a=

LONGTUD as

POLPROJ as

DRSP/DT as

DLON/DT as

DPOL/DT as

STA X as
STAY ss

STA Z as

DSTAX/DT ss

DSTAY/DT as

DSTAZ/DT ss

VLOVE as

HLOVE ss
TIDPHAS as

GEN REL gAMMA

OEOCENTERX
GEOCENTERY

GEOCENTER Z

COORDSCALK

Definition

Cylindrical
station
coordinates

Time rates of

change of
station coordinates

Cartesian

station

coordinates

Time rates of

change of
station coordinates

Vertical Love number
Horizontal Love number

Tide lag

Post-Newtonian gamma

Coordinate frame offset

Cartesian

components
Scale factor

X VVVVVV

Y vvvvvv

Z vvvvvv

DX vvvvvv

DY vvvvvv
DZ vvvvvv

Space vehicle epoch

position Cartesian

components
Space vehicle epoch

velocity Cartesian
components

Reference

(2.1)
(2.2)
(2.3)
(2.1)
(2.2)
(2.3)

(2.4)

(2.5)

(2.e)

(2.4)

(2.5)

(2.6)

(2.8)

(2.8)

(2.13)

(3.s)

(2.79)
(2.79)
(2.79)
(2.Sl)

Sec. 5.4

ss station number

vvvvvv satellite name
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TableB.I cont.

Glossaryof CPSOM¢ Parameters

Parameter

el

e2
UT1- UTC

e2
fI

, i

Aoj, A2y
Axi, A3j

Boj, B2_
Blj, B3_'
Ac

_Z_rv

PZ_o,

PZw,.t,

P

GPSONC name

X POLK MOTION

Y POLE MOTION

UT1 MINUS UTC

X POLK RATE

Y POLE RATE

UT1-UTC RATE

ROT TMEAK 0FFS

T ROT TWF._ RATE

NUT AMPLPSI ynxm
NUT AMPLPSITynnn
NUT AMPLPSIA

NUT AMPLEP8 ynnn

NUT AMPLEPSTynnn
NUT AMPLEPSA

DRYZTROP as

YETZTROP am

DDTRP/DT as

DYTRP/DT as
DRYMAPSO as

Definition

Pole position

components
UT1 - UTC

Pole position
time rates

UT1 - UTC time rate

Perturbation rotation

coefficients

Nutation amplitudes
in longitude

Longitude nutation tweak

Nutation amplitudes
in obliquity

Obliquity nutation tweak

Dry zenith delay

Wet zenith delay
Zenith delay

time rates

Lanyi map parameter

Reference

(2.24)

(2.23)

(2.30)

(2.27)

(2.28)

(2.29)

(2.76)

(2.76)

(2.51, 2.53)

(2.51, 2.53)

(2.57)
(2.52, 2.54)

(2.52, 2.54)
(2.58)

(4.1)
(4.1)
(4.2)
(4.2)
(s.se)

?
Y

nnn

sB

X, Y, or Z

8 or O for sine or cosine

number of term in Wahr series

station number
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